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i PROJECT SUMMARY

The quantitative prediction of the dynamics of separating unsteady flows, such as

i dynamic stall, is of crucial importance. This six-month SBIR Phase I study has

developed several new pressure-based methodologies for solving 3D Navier-Stokes

i equations in both stationary and moving (body-comforting) coordinates. The

present pressure-based algorithm is equally efficient for low speed incompressible

flows and high speed compressible flows. The discretization of convective terms by

the presently developed high-order TVD schemes requires no artificial dissipation

and can properly resolve the concentrated vortices in the wing-body with minimum

numerical diffusion. It is demonstrated that the proposed Newton's iteration

technique not only increases the convergence rate but also strongly couples the

iteration between pressure and velocities. The proposed hyperbolization of the

pressure correction equation is shown to increase the solver's efficiency. The above

proposed methodologies were implemented in an existing CFD code, REFLEQS.

The modified code was used to simulate both static and dynamic stalls on two- and

three-dimensional wing-body configurations. Three-dimensional effect and flow

i physics are discussed. Further development and validation are proposed for Phase

II.
I
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1. INT]RODUCT1ON

1.1 Dynamic Stall Phenomenon and Its Significance

IDynamic stall is a complex physical event induced by a large amplitude motion of

aerodynamic bodies. It is a phenomenon characterized by the shedding and passage

over the upper surface of a lifting surface of vortex-like disturbances. Associated

Iwith this phenomenon is the generation of intense vorticity near the nose of the

body, which occurs as the pitching of the lifting surface dynamically surpasses its

I stall angle of attack. This vorticity increases the circulation of the flow and thus the

lift force acting on the body. As a result, large unsteady aerodynamic forces are

I generated from which the lift, drag and moment coefficients greatly exceed their

maximum static counterparts. The unsteady effects of dynamic stall are usually

dominated by turbulent flow and the production of large scale vortices. The

dynamic stall events will either proceed with the generation of weaker vortices if

the body remains pitched above its static stall angle of attack, or terminate if the body

returns to an angle of attack sufficiently small for reattachment of the flow. Figure

I 1-1 illustrates the typical flow field during dynamic stall. Excellent reviews on the

subject have been presented by McCroskeyl"2 and Carr.3

Dynamic stall is of importance in various aerodynamic applications including

U aircraft maneuverability, helicopter rotors, and wind turbine. For example, when

the dynamic stall appears in the retreating blade of a helicopter rotor, it produces a

loss of lift, thus an increase in power is required which in turn increases the
pitching loads and vibratory stresses. Therefore, significant efforts have been

devoted to understand and eliminate the undesirable effects associated with

dynamic stall on helicopter rotors. Recent efforts are exploring the possibility of

utilizing the unsteadiness of the flow field to enhance aircraft performance and to

attain the sustained dynamic maneuvering in the post-stall flight regime. For

I 1J !! ee
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Figure 1-1. Sketches of Flow Fields During Dynamic Stall

(a) Light Stall; and (b) Deep Stall1
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example, Robinson and Luttges 4,5 have analyzed the repetitive interaction of the

dynamic stall vortices as a means of maintaining flow attachment to increase lift at

Ihigh angles of attack. They also correlated this phenomenon as a function of the

driving parameters involved, i.e., pivot location, airfoil shape, Reynolds number

and mean angle of attack. Indeed, the impetus to exploit the energetic nature of

large vortices to potentially enhance performance has already been demonstrated. 1

However, it is clear that before such a realistic usage is possible, extensive studies

must be undertaken to expand our knowledge of fundamental aspects.

1.2 Literature Review

I Dynamic stall is much more difficult to analyze and predict than static stall because

it depends on many parameters, including:I
* airfoil pitch rate, pitch amplitude, and pitch axis location;

• mean and maximum angles of ramp or oscillation;

* airfoil geometry, including thickness, leading edge curvature, and camber;

wing or bladetip shape;

* free stream Reynolds and Mach numbers.I
In the past, dynamic stall research has proceeded along several avenues: analytical,

I experimental, and computational. Analytical methods were used primarily to

complement both the experimental and computational methods. Due to the

I complexity of the flow field, analytical methods were often found not self-sufficient,

and as such will not be discussed herein.

As this study concerns computational investigation of dynamic stall phenomenon,

the related works on computational approach, experimental visualizations, and

I
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three-dimensional effect have been reviewed, and briefly summarized in the I
following three sections.

1.2.1 Computational Approach

The recent advancement of Computational Fluid Dynamics (CFD) has provided a

prediction capability that was unattainable only a few years ago. The earliest

computational investigations of dynamic stall appeared in the 1970s and early 1980s

with the works of Mehta, 6 Gulcat,7 and Sankar 8-10 as the most representative ones.

In 1977 Mehta 6 solved the Navier-Stokes equations for laminar flows to determine

the flow field around an oscillatory NACA0012 airfoil. Although the flow field was

computed in detail, it was limited to low Reynolds number flows and required large

amounts of computer time. I
Relatively recently, Sankar and his co-workers 8"10 used the unsteady, compressible,

Reynolds averaged Navier-Stokes equations in the computation of laminar and

turbulent flow fields around oscillating airfoils. Their aerodynamic load prediction

agreed with the experimental data during the upstroke prior to the stall. Yet, they

could not resolve the details in the post-stall regime.

In the mid 1980s, Wu and his co-workers 11-13 developed a method for computing

massively separated unsteady incompressible flow fields. This method was based on i
the velocity-vorticity formulation of the Navier-Stokes equations which consists of

the vorticity transport equation and an integral equation for velocity. The results

were consistent with experimental data.

Cebeci, et a/. 14,15 have reported extensive investigations using an interactive

approach which solves inviscid and boundary-layer equations and allows them to

influence each other in an iterative manner. This method was developed and

4 I



tested for steady flows and was used in a quasi-steady manner to examine the

evolution of the flow behavior around oscillatory airfoils operating in light stall

conditions.'5

Visbal and Shang 16"19 presented a series of papers describing the development and

application of a compressible Navier-Stokes solver. These papers address many of

the physical variables associated with dynamic stall. Rumsey and Anderson 20

applied an upwind-biased, implicit approximate factorization algorithm to several

unsteady flows on dynamic meshes. They used the thin-layer form of the

compressible Navier-Stokes equations to solve both laminar and turbulent flows

over airfoils pitching about the quarter chord. Shida and Kuwahara 21 modeled the

time-accurate static stall of a NACA 0012 airfoil with artificial viscosity that

permitted resolution of a small scale structure. Shida, et al.22 further modeled the

I dynamic stall of the NACA 0012 airfoil using a time-accurate unsteady Navier-

Stokes equation solver and computed the flow over the NACA 0012 airfoil

I oscillatory in pitch at M = 0.3, Re = 4 x 106.

I Ono 23 simulated the dynamic stall process on a two-dimensional NACA0012 airfoil

oscillating in pitch. The qualitative agreement with experimental data was fairly

I good, but quantitative agreement wasn't satisfactory. Currier and Fung 24 conducted

a numerical study to assess the sensitivity of the separating boundary layer to the

I transition location. They found that the bursting of the separation bubble at the

airfoil leading edge is the onset mechanism for most of the dynamic stalls. jang et

I al.25 applied the implicit approximate factorization solution algorithm of Beam-

Warming 26 to the computation of the unsteady boundary layers on a rapidly

I pitching NACA0012 airfoil and found good agreement with the unsteady pressure

measurements of Landon 27.

I5
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The most recent computational studies have been presented by Shrewsbury and

Sankar 28, G-ohsmyer et al.29, and Ghia et al.30

1.2.2 Experimental Approach

Experimental data has provided the basis for the current understanding of the

dynamic flowfield. Most of the experimental data for unsteady separated flow over

airfoils have been obtained for oscillatory airfoils undergoing relatively small

sinusoidal pitch oscillations (±1 - ±10 degrees) about a relatively small mean angle of I
attack (0 - 150) as typified by the experiments reported by McCroskey and Philippe,31

McAlister and Carr, 32 and Martin, et al.,33. A limited amount of experimental data

have been obtained for airfoils undergoing constant pitching rate motions up to 3
moderate angles of attack of at least 300. These works include the study of Harper

and Flanigan, 34 who obtained force balance data on a small aircraft model pitching

up to 300, the work of Ham and Garelick,35 who measured surface pressure on an

airfoil pitching up to 30 °, and the work of Francis, et al.36 who measured surface 3
pressure on an airfoil pitching up to 601. None of the above mentioned works

contain any flow visualization data. Deekens and Kuebler 37 obtained flow

visualization data from a NACA 0015 airfoil and observed the dynamic leading-edge

separation phenomenon for several low Reynolds numbers (less than 3 x 104) and

non-dimensional pitch rates up to 0.26. Daley 38 obtained leading-edge dynamic stall

data for Reynolds numbers up to 3 x 105 and non-dimensional pitch rates up to 0.06. 3
Walker, et al.39 obtained flow visualization data along with hot wire data on a

NACA 0015 airfoil undergoing constant pitch rate motions. These data were 3
obtained for a Reynolds number on the order of 4.5 x 104 and non-dimensional pitch

rates up to 0.30. I

Compressibility effects have been addressed experimentally during the last few I
years. Results of Schlieren studies by Chandrasekhara and Carr 40 on an oscillatory

6
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airfoil have indicated that compressibility effects set in at M = 0.3. Further studies by

Chandrasekhara and Ahmed 4l using LDV have shown the formation of a

separation bubble near the leading edge prior to the formation of a dynamic stall

vortex. Studies using the PDI technique by Carr, et al. 42,43 have confirmed the

presence of the separation bubble and have shown that the flow gradients are slow

to develop in the oscillatory case compared to the steady-state resulting in the delay

of stall known as dynamic stall. Ahmed and Chandrasekhara 44 carried out a

detailed study of the reattachment process of dynamic stall flow over an oscillatory

airfoil. They have found that reattachment progresses through a separation bubble,

j which change size during the process and disappears at a low angle of attack.

I Chandrasekhara and Brydges45 documented the effects of increasing amplitude on

an oscillatory airfoil in both compressible and incompressible flows and showed that

I larger amplitudes resulted in vortex retention at higher angle of attack for a given

Mach number and reduced frequency.I
1.2.3 Three-Dimensionality of FlowI
The effect of three-dimensionality on aircraft dynamic stall is significant and must

be included at the onset if a full representation of dynamic stall on an aircraft is to be

attained. The effect of pitch oscillation on a delta wing was studied experimentally

Iby Gad-el-Hak and Ho.46 They found significant interaction between the vortices

shed from the leading edge and those shed during the dynamic stall process. They

i also studied the low Reynolds number, and time-dependent flows around the delta

and swept wings 47 and found that on the rectangular wing, the leading edge

separation vortex convects downstream, while it is stationary during part of the

angle on the swept wing. On the delta wing, the leading edge vortex does not

convect, rather it experiences a grow-decay cycle.

II!
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Adler and Luttges 48 obtained flow visualization for a rectangular wing with an I
aspect ratio of two, and showed that flow features were similar to two-dimensional

stalls appearing within a chord length of the tip. Carta 49 studied the effect of sweep
on an oscillatory airfoil and found that sweep effects appeared near the leading edge,

and that there were large phase shifts in the lift results for the swept and unswept

wing, but only if dynamic stall had occurred in the cycle. Wagner50 observed that

the location and size of the tip-vortex changes significantly with small variation in

the amplitude of oscilation.

In their measurement of unsteady pressure distribution on a pitching rectangular

wing, Robinson and Wissler 5 1 observed the interaction between the dynamic stall

vortex and the tip vortex resulting in prolonging the passage of the stall vortex

which in turn enhances the value of sectional lift coefficient. Ashworth, et al.52

studied three-dimensional flow field about a forward swept NACA 0015 wing. They

found that strong helical tip flow vortices dominated most of the observed flow

structures near the wing tip across all test conditions, and the far inboard span 3
locations were dominated by flows related to the leading edge vortex. St. Hilaire, et

al.53'54 examined the effect of sweep on an oscillatory wing model. They found that m

sweep tends to delay the onset of dynamic stall and slightly reduces the magnitude

of the hysteresis loop. Garta 55 found that near the leading edge the sweep effect isn

significant, and there are phase shifts in the aerodynamic forces between swept and I
unswept wings when dynamic stall has occurred in the cycle.

Ashworth, et al. 56,57, Luttges and M.C. Robinson 58, and Adler and Luttges59 have I
made a series of studies on three-dimensional vortex flows created by sinusoidal

oscillation of wings.

Salari and Roache60 investigated the influence of sweep on the deep dynamic stall of
a rapidly pitching swept wing using numerical simulations. They found that sweep

8
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tends to delay the onset of dynamic stall and reduce the magnitude of unsteady

aerodynamic loads. Chaderjian and Guruswamy 6l used a zonal grid approach to

simulate unsteady transonic viscous flow about a three-dimensional rectangular

wing with an oscillatory angle of attack. Computed real and imaginary pressure

coefficients compared well with the experimental values.

1.3 Phase I Study and Its Merits

In this project we developed and demonstrated the high-order accurate and efficient

pressure-based algorithm for predicting the quantitative features of separating

unsteady flows, such as dynamic stall in the two- and three-dimensional stationary

I and maneuvering bodies of aerospace vehicles. The major innovations and

contributions to the state-of-the-art of the Computational Fluid Dynamic of the

Ipressure-based method are:

I1. Development of high-order TVD scheme for the pressure-based

algorithm;

I2. Newton's iteration technique for fast convergence; and

3. Novel concept of hyperbolic pressure correction equation to improve

solver efficiency.

I 1.3.1 Why Pressure-Based Algorithm ?

Most aerospace vehicles tend to operate in the transonic regime where the flow field

is primarily subsonic with regions of supersonic flows. This often gives rise to

complex fluid physics such as steady and time dependent vortical flow, shocks and

separations. A solution algorithm is needed which is equally effective for a high-

speed compressible flow regime as well as for a separated and stagnated mildly

I compressible regime.

!9
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Current state-of-the-art of CFD technology can be divided into two groups:

density-based methods and pressure-based methods. In the density based approach,

density is treated as a transport variable in the continuity equation. Pressure is

derived from the equation of state. The density-based algorithms have been widely I
used for compressible and external flows. The merit of this approach lies in its

ability to obtain high order accuracy, which is accomplished by applying recently I
developed high resolution schemes, such as TVD 6 2 "6 6 , EN0 6 7 6 8 , MUSCL 6 9 and

PPM 70 . Indeed, the density-based method incorporates the non-linear wave

properties into the numerical solutions in the form of Riemann problems and

characteristic equations. This leads to algorithms which are robust and accurate for

high-speed compressible flows 71. i

The accuracy and efficiency of the density-based methods, however, breaks down at

low Mach numbers and for recirculating flows. Here acoustic wave speed becomes

very high relative to the fluid velocity, and CFL restriction requires a very small 3
time step. Whereas in the incompressible flow limit, density is constant and is

independent of pressure, so that the pressure field in the momentum equation

cannot be extracted from the density field, and density-based methods fail. To date,

the methods have rarely been used for incompressible or low-speed turbulent and

recirculating flows. Artificial compressibility has to be introduced in the continuity

equation to use the density based approach for incompressible flows.

Pressure based methods, on the other hand, are effectively characterized by

combining the continuity and momentum equations to form a Poisson-like

equation for pressure or pressure correction. Here any change in density is then

considered a function of pressure via an equation of state. As a result, it can handle

both compressible and incompressible flows with equal accuracy and efficiency. This I
approach has been very successful in complex, recirculating and turbulent flows.

10
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The governing equations in the pressure-based approach are usually solved in a

segregated manner (one variable at a time). Instead of solving block matrix

equations in a factorized form, as in the density based methods, a single equation

matrix is solved on the entire computational domain. For elliptic flow problems, as

in a dynamic stall case, it is very efficient and requires less computational storage.

Recent assessment of the pressure-based algorithms72' for one-dimensional fast

transient and resonant compressible flows with shocks, shows a very promising

future for the method in high-speed flows. In Figure 1-2 results of the compressible

flow with moving shock in a resonant pipe calculated by density and pressure based

methods are displayed. The selected test case is very challenging in that it requires

the numerical method to be non-dissipative and non-dispersive, be able to capture

I shock without wiggles, and be able to keep shock amplitude for a long time. As seen

from the Figure 1-2, the proposed pressure-based method is as accurate as

I density-based method.

U 1.3.2 Merits of the Present Methodology

There are several merits of the presently proposed methodology. First, the present

pressure-based approach has the advantage of being a unified methodology. It can

3 be applied to a wide variety situations: unsteady and steady flows; low speed

subsonic, transonic, supersonic and hypersonic flows; perfect and real gas; viscous

I and inviscid flows; single and multiple spatial dimensions; simple and complex

geometries; internal and external flows; etc. Secondly, since the convective terms

in the governing equations are modeled by a high order TVD scheme, it requires no

user-specified dissipation terms. In contrast, most of the existing pressure-based

codes require user-specified dissipation, which can result in lost accuracy of the

solution not only near discontinuities but also across the computational domain.

I
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Thirdly, by strongly coupling the velocity and pressure fields, the presently

developed Newton's iteration technique greatly improves the numerical

convergence rate and does not require the difficult evaluation of Jacobian matrix.

Finally, proposed innovative hyperbolic form of the pressure correction equation

can be solved more efficiently than the commonly used elliptic equation form.

1.4 Technical Objectives and Approach

The objective of the proposed project is to develop a high order TVD scheme and

efficient pressure-based algorithm and to demonstrate their capability for a model

problem of stall flow on static and dynamic maneuvering three-dimensional wings

in subsonic condition. The specific objectives of Phase I effort include:

i Develop a conservative and consistent formulation of third-order TVD

scheme applicable for conservative and primitive variables;

* Develop Newton's iteration technique for a complete set of primitive

variables (u, v, w, p, H, k, e, ...) solved by a "whole-field" rather than

Block-TDMA type or Block-Gauss-Seidel type solvers. Utilize the

maximum available information from Riemann solutions and entropy

U condition;

e Perform and evaluate the effectiveness of hyperbolized form of pressure

correction equation; and

* Use the modified code to investigate the flow physics of dynamic stall on a

3 static and dynamic maneuvering three-dimensional wing in subsonic

flow.

The proposed methodology has been partially evaluated on a one-dimensional

nonlinear acoustic problem with excellent results 72. The challenge for this project is

I
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to extend it to multidimensional flows and retain the high numerical accuracy for

low and high Reynolds numbers, and for sub- and supersonic flows.

The development of the above new methodologies has been achieved by adapting 3
and modifying an existing advanced CFD code, REFLEQS.73 75

I
The REFLEQS code has been developed by CFDRC personnel. Its main

capabilities/methodologies directly related to the present work are: U

1. Solution of two- and three-dimensional Navier-Stokes equations for

compressible and incompressible flows;

2. Cartesian, polar, and non-orthogonal body-fitted-coordinates and body- 3
conforming moving grid;

3. Fully implicit and strong conservation formulation;76  3
4. Central differencing with damping terms;

5. Second-order time accurate formulation; 3
6. Four turbulence models: Baldwin-Lomax model; Standard k-e;

multiple-scale model of Chen;77 and Low Re k-c model of Chien; i
7. Symmetric and periodic whole field solver;

8. Pressure-based solution algorithms, with an enhanced variant of

SIMPLEC, SIMPLE, and PISO; and

9. User friendly pre-processor and graphical post-processor.

Significant emphasis has been placed on the systematic and quantitative validation 1
of REFLEQS. It has already been validated for over thirty benchmark problems. i

References 73 through 75 describe some of these problems.

I
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1.5 Outline of the Report

IThe next section (Section 2) describes the basic pressure-based methodology in

i current REFLEQS code. Section 3 presents the proposed improvements including

high-order TVD schemes, Newton's iteration, and hyperbolization of pressure

correction equation.

Section 4 presents the validation of the REFLEQS code on 2D airfoils for inviscid

supersonic and transonic flows, and viscous transonic flow. Several dynamic stall

i conditions are also simulated. Section 5 describes the simulations and discusses

flow physics of static and dynamic stalls on three-dimensional rectangular, forward

3 swept, backward swept, and delta wings. Comparisons are made, wherever possible,

with experimental data and visualization.I
Finally, Section 6 presents the summary of the present study and recommendations

3 for further investigations. Preliminary recommendations for the SBIR Phase II

study are also outlined. Further selection and elaboration of these

recommendations will be presented in the proposal for Phase II work.

1
I
I
I
I
I
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2. PRESSURE-BASED METHODOLOGY I

The objective of the present study is to develop advanced pressure-based i

methodology to study the physics of three-dimensional dynamic stall. To 3
accomplish the above objective, an existing advanced CFD code, REFLEQS, will be

modified by implementing the proposed techniques. This section will briefly 5
describe the basic pressure-based methodology available in REFLEQS. The proposed

more advanced techniques and their uniqueness will be presented in the next

section.

2.1 Governing Equations and Transformation I
The flow governing equations are the compressible, Reynolds-averaged, Navier-

Stokes equations. They can be written in a Cartesian tensor form as: 5
ap +a

a (21 3PA
IIa a a a [ u  a x ax

u~H + a ' i )=P a i ax . aIIxj 3 a k 2 2
d ax. U aj + ; (2.2)

a!-pH)H =1 -a FLT~ a + a u.~iL' -auk (2.3)
ati a t kx ~jaj ax, ax ax k1

where p is density, ui is the Cartesian velocity component, p is the pressure, H the I
total enthalpy, T the temperature, and t the time. xi is the Cartesian coordinate, i

xl - x, x2 =y, x3 =z (2.4)

I
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i and r are the effective dynamic viscosity and effective thermal conductivity,

respectively:

P -PI + Pt  (2.5)

F= r + r, (2.6)

I The subscript I denotes laminar quantity, and t the turbulent quantity.

For most engineering applications, including the present problem, Cartesian

i coordinates are rarely adequate in describing the geometric configuration. Thus, a

generalized coordinate mapping is introduced in the form

x=x( ,r,,) , y=y(,77,T) , z=4z(4,,,), t = (2.7)I
or simply

xi xi f 1(~A tz (2.8)

where
S , 2 3= = 77 =, (2.9)

The purpose of introducing temporal variation of the coordinates is to

I accommodate body-conforming moving coordinates.

I Using the chain rule we have,

I 4i a (2.10a)

i t 'cat 4iJ
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a a~j a(2.10b)
Txi axi

By some manipulation, Equations 2.1 to 2.3 can be written in a strong conservation 3
form, except pressure term:

a + a 2j  0 (2.11)

a (Puj+ a -Puxui) Igl I
L4k [ Pk a + a aLuj 2,.a uia4m (2.12) 3

a jax, Dxj a~l axi a ' 3 g' ax1

IpH+ a PUH ap a aT

contraariantvelociy comanent,

__I - -- + - r

at = a4s j a~j (2.13)
W ~ J £ax1 "axi W~ axi W~ 3 ,rn aIx1

where U1 is the velocity component in the 4i direction, also known as theI

at c v n oxkonc p

I
t has been replaced by t in the above equations. J is the coordinate transformation

Jacobian, given by 3
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1 I ( ,X 3) aX, X2 aX3 aX aI2_=(= - _ +

--Y (a3 aJax x a 2 x x

IRl = x{ (y7zz - znyd)+ x, (xy - yz) + x;(yzI-zy) (2.16)

The coordinate-transformation matrices are defined as

& =I(Y7.;- Z Y;). rx=J(z4Y,- ye;).

4Y , =(ZX; -X,,Z;), 77y= (e; -z¢:;) ,

Sx =J(xIy;- YX ;). 7=z (yex -xy;) ,

G (y4z7- zeY,) t =-xt~x- yty- zt~z , (2.17)

C" =I (xOyq - yexq), 4 =-xt cx - y ,- z4"z

3 Unlike the density-based method, where pressure is directly expressed in terms of

density and kinetic energy by the equation of state, the pressure-based method keeps

3 the pressure gradient terms in the momentum equation for the coupling with

velocity.3
2.2 Discretization of Governing Equations3
The discretized finite-difference forms of the governing differential equations are

I obtained using a finite-volume approach. First, the solution domain is divided into

a finite number of discrete volumes or "cells," where all variables are stored at their
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geometric centers. In the current REFLEQS code, a non-staggered grid system is

adapted, and a typical control volume is shown in Figure 2-1.

Equations 2.11 to 2.13 are then integrated over all the control volumes by using the

Gauss's theorem. For example, the integration of the continuity equation of 2.11

le a d s to i__ _+_ _+_ _-_,_ _ (2 .1 8 )(P vol) -(p vo+ .+ G +G o I

where vol is the volume of the cell, and the G's represent the mass flux over the 3
control volume surfaces.

Ge = pU2 , Gw pUJ ,

Gn = pU2 n " Gs 2 
(2.19)

Gh =  
pU3 , I = A  PU 3),

The subscripts e, w, n, s, h, and 1 represent the values at east, west, north, south,

high, and low faces. The superscript "o" represents the previous time level. For

clarity, the first-order backward Euler differencing scheme is shown. For second I
order accuracy in time, the fluxes of G's can be interpolated between the present

time level and the previous time level "o". The detailed derivation will be omitted I
here.

I
I
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I ,U

I 'I -"I. .J-

I
x3 Physical Domain Transformed Domain

I
Figure 2-1. Curvilinear Coordinates and Finite-Volume Representation

3 Integration of momentum equation 2.12 results in

U 2 3

1 1

M(tuJL g 2 j+(Gui) EN, A g 3k _&UiJ (2.20)

I II~ ax, Pe p x) S) 7L (Ph 'PI) + j

1 
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where I

ik - i k (2.21)

-xi 'x.

and S - J c 2 A 3  1 4 i De1)au i .(a 41 n I ] I

ui- aJ i 'ae 3n' I xm 1

W3A41c [D~a~uj 2 (D 2 a -i u- a.1  +

ax ax~ a~ 3,D x l (2.22)

tpA A. 2 D[(e' '_-.aui (2 a .au, 81

Similarly, the energy equation can be written as:

(p vol H) -(p vol H)f+[pAA~1 ai-r
At [ GH JCpk

aP w

(G H )- FA 3A g2k H n + G H )- 
I 3k aH h  

(2.23)I

[C a~ ks [ JCP kt
=SH

In the above equation, the heat diffusion terms have been replaced by the diffusion

of total enthalpy. SH is: I

I
I
I
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[F~A3k(I ~Ig ~cegk~ (2.24)

[J\~ k pkj aT J k p)

44 Cp ak

____ ___ I__ (______ au ieI + f 22 a4'u~ mLkax aja 1 3 JX1  Fa1 -r

IJ

I~ ~ ~ ~ ~~~x 4p54j (21~,(~ ~ .1~
IU444~ 4j aeK~ a~lax1  n
I axj ax)a' 3 axj axjam -11

As seen from above, the momentum equation and the energy equation are in the

same form. The key issue is to approximate convective terms and diffusion terms

I from cell faces (e, w, n, s, h and 1) to cell centers (P, E, W, N, S, H, and L). We will

take the east face as an example. The convective term C can be generally written as:

C e= (GO; O= ui, H (2.25)

The following approximation can be made:

e = iCe U + (1- p) CN (2.26)

where superscript UP stands for upwind differencing and CN for central

differencing.

I

I



I

ccp Ge1Ce -, (2.27a) I
22e 2e -(E 0P) (2.27b)

As a result Equation (2.26) becomes, 1

C, =-q(OE+Op)- jGel(OE-OP) (2.28) I

As for the diffusion term, De:

De=FA2A3 glkA) 1

= FA gl 2 3 1 + g12 D + g13

a (2.29)

FA4 2A4 3 ( 1 1 E + g12 One- se + he OleA4 1 A4l _ 2 _A+g 3

I

A further approximation is made as to express okne' OPse' Ohe" and Oe in terms of the

values at cell center: I
OPne '(N + E + P + E)

O - ('ks + OE + OP +Ol
4ke (2.30) -

Ohe = 1 (0H + OE+ 01P+4'HIE)I

Ole1 (+ E + 0p+ L E)

The same procedure applies to the convective and diffusive terms at west, north,

south, high, and low faces. With these representations, a finite-difference analog of

the governing equations can be expressed as:
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Apop = AEOE.+ Awow + AN N + As s + AHOHn+ AL OL +

Asw Osw + ANW ONW + ASE ,SE + ANE ONE +
(2.31)

3 AWL OWL + AEL EL + AWH 'WH + AEH PEH +

ALS 'PLS + AHs OkHS + ALN 0LN + AHV 'HN + So
* or simply

ApIp I Anbkn b + I Acnbjcnb + So (2.32)
nb cnb

where = Ui, H

5 nb= E, W,N,S, H,L

cnb = SW, NW, SE, NE, WL, EL, WH, EHLS, HS, LN, HN

cnb means cross-neighbor. Acnb vanishes when the grids are orthogonal, and it is

3 small compared to the other part if the grid non-orthogonality is not severe.

3 2.3 Pressure-Velocity Coupling

3 The discretized finite difference equation (2.32) does not apply to continuity

equation. Unlike the density-based method where density is treated as a transport

3 variable in the continuity equation, the pressure-based method takes pressure as the

dependent variable in the continuity equation. It requires a proper coupling

3 between velocity and pressure. Presently, the coupling of pressure and velocity is

achieved via the well known SIMPLE algorithm 78 and its variants SIMPLEC79 and

1 PiS0.80

I As seen from Equation 2.18, the contravariant velocity component is needed at a

control volume face. For example, at the east face,
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(U~ =()+ (Ui'e (2.33)

Since only the values Uj at cell center P and E are known, an interpolation is i
required. The first choice may be the linear interpolation. This, however, will give

rise oscillations in the final resolution, as explained by Patankar 78. Early practice was

to use a staggered grid arrangement to avoid any possible oscillation.

In the staggered grid arrangement, velocity components at cell faces are solved from

momentum equations and hence no interpolation for the velocity components is

necessary. In the current REFLEQS code, a non-staggered grid system is used, and to

avoid oscillations, a special interpolation practice is employed, as suggested by Rhie

and Chow 81, and by Peric 2 . I

The idea is based on the supposition that if the velocity values at the cell faces were

obtained by solving the momentum equations at the cell faces, these momentum

equations would contain a pressure gradient which could be evaluated as the

difference between neighboring pressure locations. To illustrate this procedure, we

write the momentum equation as:

=[A nbUnb + XA~fcnbu 1 a I
(i 1ApSiPDi ~j (2.34)

where
[~ i~~2~3~j](2.35) I

AI

I,



In comparison to Equation 2.32, the pressure gradient terms have been taken out of

S., and shown explicitly. To evaluate (u)e (at east face) the terms on the right-hand

side of Equation 2.34 are selectively interpolated for "e" location. Thus,

S(Ui)e = Anbnb + Y AcnbCcnb +Su i - (2.36)

where the overbar denotes linear interpolation. The cell face velocities are thus

made dependent on the pressure at two neighboring nodes, as is the case in the true

staggered arrangement. For uniform grid, with the use of Equation 2.34, we can

write the above expression as:

[Di [(Dij)E+(Dij)] ( + D
2 21 a~ Df

*I It is equivalent to linear interpolation with added third order pressure damping.

This pressure damping term is necessary for incompressible flows, and it may cause

accuracy problems for source dominant (such as rotational and gravitational) flows,

as well as compressible flows. Therefore, a coefficient is multiplied to this term:I
(Ud Ud + (U d1) al] )a] -(j Djj~pj LP+ D..-j_

2 2 J I a -(j)E a+(D1,ip 2-8

For incompressible flow ad = 1.0, and for compressible flows ad = 0.1. With (ui)e

calculated as the above, the contravariant component can be found from Equation

I (2.33).

2
I
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From now on the SIMPLE strategy can be used in its standard form, developed for l

the staggered arrangement grid system. The mass imbalance resulting from

continuity equation 2.18 is:-

(p vol) - (P vol); +G * G* G: G* * = * (2.39) 1At +Ge-Gw+Gn.-s+Gh -l -SmAt

where superscript * denotes values employed in and resulting from the momentum I
equations.

To enforce the continuity equation, a mass flux correction G' is introduced, which in

turn relates velocity correction ui , which is further related to the pressure correction I
p' by:

=- Di p  (2.40)
R 'j I

The continuity equation then reads

At (2.41)

For Ge we have

2 pU (2.42)
II

From equation of state and Equation 2.33, we have I
. = ap 1 (2.43)

and

andx i D3i j 
(2.44)
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This leads to

I At Ip ax- i Te W (245)

II U2P-Pat5jTp + I t =a ' x e - ,

Equation 2.45 is the same form as Equation 2.20, and hence it leads to an equation for

I the pressure correction which has the same form as Equation 2.32.

I For the solution domain as a whole this results in a system of N equations with N

unknowns, where N is the number of control volumes. Several efficient iterative

solvers have been employed to solve the system equations, for example, modified

3 strongly implicit procedure (SIP) of Stone,83 based on an incomplete LU factorization

of the coefficient matrix.

2.4 Solution Algorithm

Based on the proceeding discretization, the solution algorithm for the transient

3 flows in body-fitted moving coordinates can be summarized as follows:

1. Specify initial grid and values of dependent variables (initial conditions);

2. Determine grid velocity 4t, q, t from the new grid position after the time

3 has advanced by At;

3. Calculate the coefficients of the momentum equation and solve to obtain a

* new velocity field;

4. Calculate new values of mass fluxes through the cell faces using Equations

I 2.33 and 2.19, and determine the mass imbalance using Equation 2.39;

I
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5. Calculate the coefficients of the pressure-correction equation and solve to

obtain the pressure-correction field;

6. Correct the mass fluxes, nodal velocity components and pressure by the

calculated pressure;

7. Calculate the coefficients of other scalar equations which may be coupled

with the momentum equation (e.g. total enthalpy, turbulent kinetic

energy and its dissipation rate,etc.) and update the fluid properties

(density, viscosity) if necessary;

8. Return to step 3 and repeat until the sum of the absolute residuals in the

mromentum and continuity equations has failed by a specified order of 3
magnitude; and

9 Advance the time by another increment At and return to step 2; repeat I
until the prescribed number of time steps is completed or the prescribed

time has been reached. I

The number of iterations per time step (steps 3-7) depends on the size of the time i
increment At; for smaller At fewer iterations are needed to reach the solution at the

new time level.

2.5 Turbulence Modeling i

When the Reynolds number is high, the flow around an airfoil or wing is turbulent. U
Due to the finite resolution of computational grids, a computer simulation will not 3
be able to capture the small scale vortices. This requires the modeling of the

turbulence effect. In the current REFLEQS code, there are four turbulence models i

available: Baldwin-Lomax model; Standard k-c; Multiple Scale k-e, and Low

Reynolds number k-c, proposed by K.Y. Chien. 3

i
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Previous studies on the effect of turbulence models on dynamic stall have been

conducted by Wu et a184. They compared, for a variety of flows, three eddy viscosity

models: the algebraic Baldwin-Lomax model, the one equation Johnson-King

model, and the two equation Gorski k-. model. They found that the Baldwin-

Lomax model 85 is as reliable and accurate as any other model for massively

separated flows, but that all models are to date inaccurate in the same regime.

Furthermore, the Baldwin-Lomax model is simple to employ and cost efficient. In

light of Wu et al.'s conclusions 84, we will simulate the effect of turbulence by the

Baldwin-Lomax two layer eddy viscosity model85.

2.6 Grid GenerationI
The time-dependent coordinate transformation (i.e. moving grid) required for the

present flow simulation was implemented using a "rigid" grid attached to the airfoil

or the wing. This approach eliminates the need for multiple grid generation, and

i only one grid is required. In the present study, an 0-I grid topology is employed,

and a typical three-dimensional grid around a wing is shown in Figure 2-2. First an

3 O-grid is generated using algebraic method around an airfoil. An elliptic solver

based on Thompson et al.'s methods 86 is then applied to improve grid

3 orthogonality, if required. An algebraic method is then used to generate three-

dimensional grid from 2-D O-grid.

Il
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Figure 2-2. An O-H Grid Around a Rectangular Wing

with NACA0012 Cross-Section
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I 2.7 Boundary Conditiona

I The present procedure requires boundary conditions to be set on: a) solid boundary;

I b) symmetric boundary; c) far field boundary; and d) periodic boundary.

I 2.7.1 Solid Boundary

At the solid boundary the "no-slip" condition requires the fluid velocity to be the

same as that of the solid, and the motion of the solid is a known function of time.

I Also adiabatic flow conditions have been applied on the solid surface. The pressure

at the solid surface may be evaluated in various ways, such as solving the normal

momentum equation at the surface. In the present study, a two point extrapolation

was used. For example, if the east face is a solid boundary and uniform grid is used:

Pe =3Pp -IPW (2.46)U
The above form was found to give virtually the same results as those obtained by

* solving the normal momentum equations at the solid surface.

2.7.2 Symmetric Boundary

I This boundary applies to a three-dimensional wing root where the viscous effect is

Ineglected. It also applies to the wall for inviscid calculation. At this boundary, the

normal contravariant component is set to zero, and other components are

extrapolated from the interior. The pressure is found by Equation 2.46.
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2.7.3 Far Field Boundary

At the far field boundaries, except in the downstream boundary, the flowfield is

assumed to be prescribed and undisturbed. At the downstream boundary, the i
velocity field and total enthalpy, as well as pressure, are extrapolated from the

interior.

2.7.4 Periodic Boundary i
On the O-grid cut, spatial periodicity is imposed. This leads to a system of periodic i
matrix equations.

i
I
I
I
I
I
i
I
I
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I 3. PROPOSED NEW METHODOLOGIES AND IMPROVEMENTS

I The pressure-based numerical solution procedure for the dynamic stall around an

airfoil or a wing has been described in the previous section. In comparison, most of

the previous numerical studies relied on the density based method. The typical

I representatives of density-based codes are Pulliam-Steger's ARC2D and ARC3D flow

solver 87 "89. These codes solve either the Euler or the simplified Reynolds-averaged

Navier-Stokes equations with the standard thin-layer approximation. Two

numerical algorithms are generally supported by the ARC 3D flow solver, including

ADI algorithm that solves block-tri-diagonal matrices along

each coordinate direction due to Beam and Warming 26 and a diagonalized ADI

1algorithm that solves scalar pentadiagonal matrices along each coordinate direction

due to Pulliam and Chaussee89 .I
In comparison to the density-based method, which is generally limited to

compressible flows, the pressure-based method can solve all speed flows ranging

from incompressible to high Mach number compressible flows. Instead of solving

systems of equations, the pressure-based method solves one variable at a time, in a

segregated approach, which requires less computer storage. Segregated solution

3 approach, however, may lead to numerical difficulties when strong coupling among

all of the variables exists (e.g. high Reynolds number flows). The presently proposed

_ Newton's iteration technique aims to resolves this problem.

-I High resolution TVD schemes have been well proven for density-based method,

and are still to be explored for pressure-based method. This section describes three

new methodologies:

II
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1. High-Order TVD Schemes, improving the accuracy;

2. Newton's Iteration Technique, accelerating numerical convergence rate;

and3
3. Hyperbolic Pressure Correction, for pressure solver efficiency.

3.1 High-Order TV2 Schemes

Total Variation Diminishing (TVD) concept was first introduced by Harten 64. An

excellent consolidation of various TVD methods has been given by Yee 90. These

high order TVD schemes have shown excellent accuracy in solving Euler equations

for compressible inviscid flows. They have also been applied in a straightforward

manner for the evaluation of the convective terms of the Navier-Stokes equations

within the framework of density-based algorithms.91"95 The Research Group at

CFDRC has initiated a study on high order TVD schemes in the pressure-based

algorithm,72 and the results obtained for quasi-one-dimensional nozzle (Figure 3-1),

1D Riemann problem (Figure 3-2), and resonant pipe problem (Figure 1-2) are very 3
promising. I
The fundamental success of the TVD schemes lies in the accurate, conservative and

consistent evaluation of the convective flux (Equation 2.26). The key issue is how to 3
evaluate the "damping" parameter 0 of Equation (2.26), so that the solution is high-

order accurate and oscillation free. In TVD schemes, the damping 0 is adaptive

based on the profile of the local transport variable. By manipulating Chakravarthy

and Osher's TVD scheme65, we can find the east face flux as: 3
+D UP( CN (3.1) 3

where

-1 1 + (3.2)
4 4"13= ini od (,1)+..!
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I

I with w as a compressibility parameter,

3 _- 
(3.3)

I 1-0

and r is the flux difference ratio:

(C cI ef , and o- sign (U,)

I
I

MchNb rmu

I T.EOR

I Figure 3-1. Mach Number Calculated Along

I a Converging-Diverging Nozzle Length by Upwind,

Central, and TVD Schemes With Pressure-Based Method
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Figure 3-2. 1-D Shock Tube Problem by TVD Scheme With Pressure-Based Method 3
Based on the value of 0, one can recover different schemes 3

=1/3 Third-order scheme

- I Fully-upwind

=0 Fromm's

= 1/2 Low truncation error second-order (3.5)

= 1 Central 3
- -1/3 No Name I

The minimod function is defined as: I!
minimod (a,b) = sign (a) max 10, min [14 sign (a) .b ]) (3.6)

I
I
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E The mathematical meaning of this limiting procedure is to pick up the smallest

value between a and b, if both have the same sign, or to pick up zero if both have

different signs.

I 3.2 Newton's Iteration Technique

I It is well known that Newton's iterative method gives a superior convergence rate.

However, Newton's method is frequently used to solve small systems of nonlinear

algebraic equations, and it is less often used for the large systems of nonlinear

equations, such as those generated by the discretization of Navier-Stokes equations

for fluid dynamics. This is because Newton's method requires EXACT evaluation

E and inversion of the Jacobian matrix, which is alr-'ost impractical due to limited

computer memory and speed. Many of the approaches for solving Navier-Stokes

equations are only an approximation to the pure Newton's method. For example

the popular Alternating Direction Implicit (ADI) method in density-based

algorithms uses an approximate factorization of the Jacobian matrix to reduce

numerical operations as well as memory storage requirements. In addition, it is

quite common to make approximations for elements of the Jacobian corresponding

to algebraically complicated terms or terms that increase the bandwidth of the

factorized Jacobian matrix, e.g. terms that arise from the turbulence model.

* The proposed Newton's method requires less storage while making no

approximations to the Jacobian matrix. To illustrate this method, we use Equation

3 2.32:

SApp- AnbOb - Acbc,,b = so (3.7)

I where 0 can be velocity, total enthalpy or pressure correction. The nonlinearity of

the above equation comes from the link coefficient A's, due to
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a. velocity quadratic convective features;

b. variable density in convection term; and

c. nonlinear turbulent diffusion.

Let subscript "o" denote the last time step value. The standard linearization in the I
pressure-based method is:

0 ~ 0 
0

fl Ab 4 n b-A Cfbcfb = S o- Ap$j + j AOb~bb + 0 0
. O 

(3.8)

The convergence rate of the above method is first-order in a single time step. We I
propose a Newton's iteration method as:

0 0 '000 0 0 0

Apop -AI A - Onb+ bA (3+9)oI
nb~nb --4cnb~cnb =S Anb~nb + -Acnbcnb

'* 0 "* 0 "*

ApOp + I An On b + 'F.,Acnbcnb

where '* means the last iteration value. The iteration loop is imposed for velocity

and pressure equations, so that it will not only accelerate the convergence, but will

also strongly couple all the variables. The method is efficient for steady-state as well

as for transient problems.

For the turbulence model, e.g. k-e model, the Newton linearization (Equation 3.9)

also applies to the k and e equations. This will couple the whole system equation

and will result in fast convergence.

3.3 Hyperbolic Pressure Correction

It has been recognized that the pressure correction equation (p' equation) in the

pressure-based method has difficulties to converge, specially for convection

I

I
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I dominated, high Reynolds number, incompressible and compressible flows. Even

though various solvers, such as block correction, conjugate gradient, coupled whole

field solver, multi-grid method, ... have been tested, success is still limited. Our

experience indicates that the residual error of momentum equations can be reduced

to machine round-off in just a few iteration sweeps of linear equation solver.

However, the iterative convergence rate of pressure correction equation is much

slower than that of momentum equations. It is particularly difficult to converge the

I p'-equation for fine grids with large cell aspect ratios and for high Reynolds number

flows. We believe that the difference between momentum equations and pressure

* correction equation in the finite difference form lies at link coefficients (or

coefficient matrix). For the momentum equation, when convection is important,

3 the link coefficients are hyperbolic. In the sense, for one-dimensional equation if

velocity is positive, the simple upwind scheme gives:I
AE = De, AW = CW + DW (3.10)

where

D = diffusion flux, C = convective flux

Whereas for the pressure correction equation, the link coefficients are always elliptic

I regardless the importance of convection. By being elliptic, it means that

AE=De,  Aw=D w  (3.11)

In a multi-dimensional iterative solver, when the link coefficients are hyperbolic,

the residual (or signal) can propagate from one end to another end in one iteration

I sweep. Whereas for elliptic coefficients, the propagation of the residual is by

"diffusion," which is much slower, and needs a large number of iteration sweeps.

The "elliptic" nature of pressure correction equation comes from the general

assumption: velocity variation is proportional to pressure gradient:
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u' -Vp' (3.12) I
This relation is Darcy's law, and it holds for very viscous flow. Actually, by using

this relation, one can obtain the lubrication equation (Reynolds Equation) or the

equation for porous medium. On the other hand, for inviscid flow, Bernoulli

equation says:

I pu2 + p = const (3.13) U
2or

or U p. (3.14)

if we substitute this relation int.., continuity equation for incompressible flow, we

have:

Vu = -Vu (3.15) I
which is hyperbolic for pressure correction. However, if we substitute Equation 3.12

into Equation 3.15 it becomes an elliptic equation. Here we propose an innovative

relation for pressure-velocity relation of the form:

u' -ap'+ bVp' (3.16)

a, in the above equation, is a coefficient representing hyperbolic contribution, and,

b, is that representing elliptic contribution. To determine the consta~its a and b, let

us consider one-dimensional inviscid flow of the form:

au ZK U2) Vp

After discretization, we have: I
spui+AnbVUi- ="-lVpi + spu? (3.18)
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I
I where

Sp = MQL; Vui = ui -Unb 
(3.19)

I At
The incremental form of the above equation is:

sU + AnbVUn b =-LVpi (3.20)

From the above equation, we expect the following asymptotic expression:

I

when Sp o 0 u i b oVol p' PAnb p 
(3.21)

when Anb -+' O, Vol ~VP

one of the approximations for and b leads to:

I = Vol Anb P' Vol SP'

Ib *P n (3.22)

I Now the pressure correction equation should contain both hyperbolic and elliptic

coefficients. One should be able to reduce the residual error of the pressure

correction equation easily by standard solver, without using multi-grid or block

correction.

U
I
I
I
I 4
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4. TWO-DIMENSIONAL STATIC AND DYNAMIC STALLS

The Navier-Stokes solver, and its improvements, described in the previous sections 1
has been applied to a number of test studies, for the purpose of validation and

studying the physics of unsteady separation flows. In all cases, the computed results m

have been compared with available numerical and experimental data. This section

considers the following test problems:

1. Steady, inviscid transonic and supersonic flows past a NACA 0012 airfoil; U
2. Steady viscous transonic flow over a NACA 0012 and an ARE 2822 airfoil;

3. NACA 0015 airfoil undergoing constant rate pitching motions;

4. NACA 0012 airfoil undergoing oscillatory pitching motions; and

5. Parametric effect on dynamic stall on the airfoils.

Each of the above cases will be described and the results will be discussed in the

following sub-sections. 1
4.1 Steady. Inviscid Transonic and Supersonic Flows Past a NACA 0012 Airfoil

The following calculations were performed for the NACA 0012 airfoil.

a. M.= 1.2, a =7.00

b. M.=1.8, a =7.00

c. M. =0.8, x =1.25'

These cases have been chosen because of the existence of accurate numerical data,

especially from density-based TVD code, available for detailed comparison. These

cases are also used for proving the superiority of proposed TVD methodology and I
Newton's iteration technique.

441

I



N

I A 100 x 50 O-gl~d is used. Figure 4-1 shows the grid near the airfoil surface. The

outer boundary is placed at 12c distance (c is the chord length).

I
I
I

I
I
I

Figure 4-1. Local View of a 100 x 50 O-Grid Around a NACA 0012

Airfoil for Inviscid Computations

Figures 4-2 and 4-3 show the Mach number and pressure contours around the

NACA 0012 at cc = 7.0', M. = 1.2, and M. = 1.8 obtained with the present third-order

TVD scheme. For comparison purposes, those from Yee's density-based TVD, 9° and

the widely distributed computer code ARC2D, version 15096 are also displayed.

I Their results are obtained using a 163 x 49 C-grid. It is seen that the present TVD

scheme gives a well-ordered flow structure and captures the shocks with a good

I resolution. It is very competitive with the density-based TVD scheme, and it

actually performs better at the trailing edge of the airfoil. The ARC2D code, on the

I 45

I



00ga0I
cc

0%0

.- .,

u~

-46



U' 7

*t DoN\ bOI / 0
~' -

* / to
- ~ - ',7

- -. ,~..8

/ ~J ii
w 33

\\\ *~A,//a

3 N> ~K\ ~I4ec
-\ / / \'\

U / ,c/

* ~/,*(U0'2
* ~ /, z, 7/ 4

I tth

u47



m

other hand, did rather poorly. The version of ARC2D96 is based on the Beam-

Warming ADI algorithm,26 and uses a mixture of second- and fourth-order

numerical dissipation terms. Due to the adaptive damping property inherent in

TVD schemes, one can capture a shock in one to two grid points without the

associated spurious oscillations near shock waves as opposed to three to four by m

ARC2D. I
The above argument is proved in Figure 4-4 which shows the pressure distribution

around the NACA 0012 airfoil when M. = 0.8 and a = 1.250 calculated by the present m

TVD scheme. From the pressure coefficient, one can dearly see that there is only

one transonic point. The quality of the result is remarkable.

To prove the superior convergence rate of the proposed Newton's iteration method, m

along with hyperbolic pressure correction, Figure 4-5 shows the comparison between

the regular iteration method by SIMPLEC algorithm and the present Newton's

iteration method. Undoubtedly, residual errors drop dramatically at a constant rate

by the present Newton's iteration, whereas traditional iteration method deteriorates

and slows down with the number of iterations. Most importantly, for some

problems where shock is strong, regular iterative method cannot converge, while

the Newton iteration can bring the residual error down by several orders of

magnitude without any difficulties! I
4.2 Steady. Viscous Transonic Flow Over a NACA 0012 and an ARE 2822 Airfoil I
A Viscous Transonic Airfoil Workshop was held during AIAA 25th Aerospace

Sciences Meeting in 1985. In this workshop a series of two-dimensional airfoil

Navier-Stokes computations were presented to establish the capability of various

methods for computing viscous flow fields for a range of conditions and geometries.

A compendium of the results is given by Hoist. 97

48 I

I



I (a) Pressure Contours

I1.25 -"0 0

I0

0.5 00.+0

I-0.25- a

I0

I -0.75- =

Ig

-1.25-

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

I (b) Pressure Coefficient

Figure 4-4. Transonic Flow over a NACA 0012 Airfoil at M =0.8and az = 1.25 by the Present Pressure-Based TVD Scheme
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Figure 4-5. Convergence History of Regular Iteration Method and Newton's

Iteration Method with Hyperbolic Pressure Correction for Inviscid Flow

Over a NACA 0012. Grid 100 x 50, M. = 0.8, and a = 1.250
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The purpose of the present simulations is to evaluate the performance of the

modified REFLEQS code in the numerical simulation of complex turbulent flows.

The test cases have included a variety of different situations ranging from attached

subcritical to transonic flows with both shock-induced and angle-of-attack-induced

separations.

The Baldwin-Lomax algebraic eddy viscosity turbulence model 8s has been employed

K in the present study for the analysis of transonic airfoil flow. The model was chosen

for its computational speed and simplicity. In addition, it has been shown to yield

accurate results for many steady flow airfoil computations. 98,99 The solutions are

assumed to have reached convergence when the residual of all equations has

dropped at least five orders of magnitude.

I 4.2.1 NACA 0012 Airfoil

Three computations were made for the NACA 0012 airfoil corresponding to

experimental results of Harris. °° All three were computed at a Reynolds number of

9 million. The grid used for the present NACA 0012 airfoil is a 200 x 63 O-mesh

with outer boundary extending up to 12c (see Figure 4-6 for local view of the grid).

Figure 4-7a shows the computed surface pressure coefficients in comparison with

experiments at M. = 0.7, and a corrected angle-of-attack of 1.490. Agreement is

excellent. For this case, the flow is attached and just slightly supersonic near the

leading edge upper surface. From density contours of Figure 4-7b, one can identify

the development of viscous boundary layer on the airfoil surface. This comparison

indicates satisfactory performance of the present code for attached, weakly transonic

flow.
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At a higher angle-of-attack of 8.34', M. = 0.55, agreement with experiment is good I
everywhere except near the shock, as shown in Figure 4.8a. Again, the angle of

attack used in the computation (8.340) is the corrected value obtained by Harris from I
the measured value (9.860) using a linear analysis for wind tunnel-wall effects. For

this case, the flow has a supersonic bubble located well forward on the airfoil upper I
surface and is slightly separated at the foot of the shock. The computation predicts

the shock location slightly aft of experiment, but it does show (from Figure 4.8b) the

small shock-induced separation evident in Harris's measurements between x/c = 0.1

and 0.2.

I
I

I
I

Figure 4-6. Grid Distribution (200 x 63) for a I
NACA 0012 Airfoil for Viscous Transonic Computation
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3 -present solution

0experiment

0. 02 0.4 0.6 0.8 1.

I x/C

3 (a) Pressure Coefficient

I (b) Density Contours

I Figure 4-7. Results of Viscous Transonic Flow Over a NACA 0012 Airfoil

at a = 1.49', M_ =0.7, and Re = 9 x 106
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(a) Pressure Coefficient

(b) Density Contours3

Figure 4-8. Results of Viscous Transonic Flow Over a NACA 0012 Airfoil

at (x=8.34, M_ =0.55, and Re =9 x 106
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I Figure 4-9a is a plot of pressure coefficient for the NACA 0012 airfoil at a = 2.260,

M. = 0.749. Again, the angle 2.260 is obtained from the measured angle of attack

(2.860) using a linear wind-tunnel-wall correction procedure. For this flow field, a

shock wave exists on the airfoil upper surface at about x/c = 0.5, which is strong

enough to cause significant boundary-layer separation. For this case, like many

others 97,10 1-10 3 the present theory with the Baldwin-Lomax model does not capture

the shock location accurately, and predicts its location too far aft of experiment.

At a Mach number of 0.7, several angles of attack were computed to produce the lift

I coefficient CL versus angle of attack a plot of Figure 4-10. The experimental data of

Harris and the data with wind-tunnel-wall correction are shown. Agreement with

the corrected data of Harris is very good.

I 4.2.2 RAE 2822 Airfoil

I Two studies were completed for the RAE 2822 airfoil, corresponding to Case 1 and

Case 6 from the experimental study of Cook, et al.10 4 A 144 x 69 O-grid around the

I airfoil was generated by an algebraic method, and is shown in Figure 4-11. The outer

boundary is located at a distance of 12 chord away. This airfoil is a supercritical

I airfoil with a significant amount of aft camber. Unlike NACA 0012, only one

experiment 10 4 is available and the experimental accuracy is unknown. Case 1 of

Reference 104 was simulated at M_ = 0.676, Re = 5.7 x 106, and a corrected angle-of-

attack of 1.930. The surface pressure coefficients for this subcritical case in

comparison to the experiment are given in Figure 4-12. As can be seen, both results

are in good agreement.

I
I
U
I 55

I



1.5I
-present solution

O experiment

0 IaI

x/C
(a) Pressure CoefficientI
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Figure 4-9. Results of Viscous Transonic Flow Over a NACA 0012 AirfoilU

at a =2.26, M , = 0.749, and Re =9 X10 6
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C3 Harrs (Unear Correction for Interference)

<Harrs (uncorrected data)
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I Figure 4-10. Lift Coefficients (CL) vs. Angle-of-Attack for Transonic Flow
Over a NACA 0012 at M. = 0.7, and Re = 9 x 106
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Figure 4-11. O-Grid (144 x 64) Around RAE 2822 I
Airfoil For Viscous Transonic Computations
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I present solution

0experiment

0o

I Pressure Coefficient

U Figure 4-12. RAE 2822 Airfoil Surface Pressure Distribution at

5 = 0.749, Re = 9 x 106, and a = 1.930 (Case 1)
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Case 6 was computed at M. = 0.725, Re = 6.5 x 106, and a corrected angle-of-attack of I
2.790. Figure 4-13 shows the surface pressure coefficients in comparison to the

experiment. The present method agrees fairly well everywhere, although the shock

location is predicted slightly forward of the experiment.

4.3 NACA 0015 Airfoil Undergoing Constant Rate Pitching Motions

In this case, we considered a NACA 0015 airfoil pitching about a fixed axis at a

constant rate from zero incidence to a maximum angle-of-attack of approximately

600. This particular airfoil section was selected because many experimental studies

are available. 1° 5 10 8 To accommodate the time-dependent coordinate transformation

(moving grid) in the present flow simulation, a "rigid" grid attached to the airfoil is

used. The advantage of this approach is that once an initial grid is generated, the

physical coordinates (x,y) and grid speed (4t,7t) can be easily computed from the

prescribed airfoil motion. I
The free stream Mach number is 0.02 and the chord Reynolds number is 4.5 x 104,

which are the same as experiment of Walker, et al.10 6 . The laminar flow is assumed,

as in the work of Rumsey and Anderson,20 and Visbal and Shang.18

I
This laminar assumption can be justified from the following two reasons. First, a

suitable model for transition and turbulence is not currently available for the I
present complex unsteady flow. Second, for the high pitch-rate regime, the energetic

forcing motion is expected to temporarily dominate over some transition and m

turbulence effects. The favorable agreement shown below between the predicted

and experimental flow features confirms the above hypothesis. I
I
I
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Figure 4-13. RAE 2822 Airfoil Surface Pressure Distribution at

M. 0.725, Re = 6.5 x 106, and a = 2.79' (Case 6)
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A grid of 200 x 77 with local view shown in Figure 4-14 was used in the present

simulation. This grid size is compatible with the grid in the work of Rumsey and

Anderson (257 x 97 C-grid)20 and Visbal and Shang (203 x 101 0-grid) 18. The grid I
extends 15 chords away from the airfoil. The temporal accuracy study has also been

carried out, and it is found that for AtU../c = 0.002 with first-order backward Euler in I
time, the solution is time-step independent. This time step was used in all the

computations reported below.

Figure 4-15 displays the instantaneous streamlines at several angles of attack and the I
corresponding experimental visualization data for a non-dimensional pitch rate of

k= ac /U.=0.2.

Both experimental and computational data show a separation bubble (vortex) on the

leading edge of the airfoil as well as a separated flow on the trailing edge at an angle

of attack of 270 (Figure 4-15a). The leading edge vortex is also known as a dynamic

stall vortex. 10 9 With the further increase in the angle of attack, Figure 4-15b, the

leading edge vortex grows in size and convects along the upper surface. At the same

time, a secondary bubble appears on the leading edge. At a = 590, the dynamic stall

vortex has grown to a size comparable with the airfoil chord length, and the flow

falls into deep stall regime (Figure 4-15c). During the whole process, the flow is fully

attached along the airfoil lower surface. In general, the present prediction compares

favorably with the experiment of Walker, et al.106

With an increase in the pitching rate to k = 0.4, the generation of the leading edge

vortex is delayed until an angle of attack of 420 (Figure 4-16b). The trailing edge

separation is visible at a = 280 (Figure 4-16a). The vortical flow is less vigorous at a

= 600 (Figure 4-16c) in comparison to the case of k= 0.2 of Figure 4-15c. Again, the

calculations predict well the experimental phenomenon. I

I
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present prediction experiment

I (a)a

(b) (x

I (c) a =600

I Figure 4-16. Comparison of Computed Flow Field ~\ith E\trerlient or NACA 0015

Airfoil at Constant-Rate Pitch, Re = 45,001) 4.:~
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It should be emphasized that the pressure-based method can deal with highly

compressible and incompressible flows with equal efficiency, while the density-

based method has difficulties for the simulation of low Mach number flows, such as

the experiment in Reference 106, where M = 0.02. It is due to this fact that Rumsey

and Anderson, 20 and Visbal and Shang18 used M = 0.2 in their simulations. I

4.4 NACA0012 Undergoing Oscillatory Pitching Motion at Transonic Conditions I

Unsteady calculations were performed for a NACA 0012 airfoil pitching I
harmonically about the quarter chord with the following relation of angle-of-attack.

a = a m + Aa sin wt (4.1)
am = 4.86 0, Aa = 2.440

The non-dimensional reduced frequency, k, defined as:

k = 6X (4.2) 3
is 0.081. The free-stream Reynolds number is 4.8 x 106, and Mach number is 0.6. 3
Both 200 x 79 and 100x69 0-grids similar to Figure 4-6 are used in the present

simulations. Third-order TVD scheme and second-order Crank-Nicolson in time

are applied. The time step is 10-4 second, resulting in approximately 2,000 time steps

per pitching cycle. The Baldwin-Lomax turbulence model is applied to account for

the turbulence effects at this high Reynolds number. I
Figure 4-17a shows lift coefficients as a function of angle-of-attack for two mesh sizes

of 200 x 79 and 100 x 69. The curves are followed in a counter-clockwise sense, i.e., 3
increase in alpha is represented on the lower portion of the plots. Both grids give

good agreements with experimental data of London.110 Another computation with 3
I
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I Figure 4-17. Lift Coefficient for a NACA 0012 Airfoil Undergoing

Oscillatory Motion, Re = 4.8 x 106, M_ = 0.6, and k = 0.081
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reduced time step size by a half (At = 5.0 • 10-5) with 200 x 79 grid (see Figure 4-17b)

overlaps the one with At = 104 , which indicates the time step independence of the

present solution. I

The pressure coefficients at several angles-of-attack during a pitching cycle are I
compared with experimental measurement,1 10 as shown in Figure 4-18. The T
symbol denotes that the angle-of-attack is increasing, and I denotes decreasing. As I
can be seen, the agreement is remarkable considering the complexity of the flow.

The generation and disappearance of a shock wave on the airfoil upper surface can

be identified from the pressure coefficients. Figure 4-19 plots the density fields at

several angles-of-attack within a pitching cycle. During the oscillatory motion, there

is a shock wave on the upper surface of the airfoil, and the flow over the lower

surface is predominately subcritical. Both pressure distributions and density 3
contours indicate that the shock position oscillates over approximately 25% of the

chord. 3

4.5 Parametric Effect on Dynamic Stall on the Airfoils i

As it is generally known, dynamic stall depends on many parameters. This i

subsection intends to investigate the influence of some of these parameters and to

explore the capability of the present code in predicting dynamic stall phenomenon 3
under various conditions.

i
i
i
I

I
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Figure 4-18. Pressure Coefficients for a NACA 0012 Airfoil Undergoing
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Figure 4-19. Density Contours Around a NACA 0012 Airfoil Harmonically
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i

i 4.5.1 Compressibility Effect

Here the experiments of Carr et a142 and Ahmed and Chandrasekhara 44 were

simulated. The conditions are the same as in the experiments:i
NACA0012 Airfoil Chord Length c=0.0762m

I Mach Number, M. = 0.3, 0.4 Reynolds Number Re = 5.4 x 105

Oscillating Frequency, f = 21.64Hz Reduced Frequency, k=0.05

Angle of Attack as: a = am + Aa sin (ot, m = 100, Aa = 100

i A grid containing 200 x 79 cells, as shown in Figure 4-6 is used. First, the steady state

conditions are simulated. The density contours from the experiments of Carr et al

using real time interferometry and from the present calculations are shown in

I Figure 4-20 and Figure 4-21. For Figure 4-20, M_ = 0.4 and ca = 0.00, whereas for

Figure 4-21, M_=0.3 and a = 10.78'. The experimental fringes seen are the constant

density contours. The stagnation point in both experiment and calculation is

characterized by the convergence of circular fringes (contours) which appear at the

leading edge. The density contours are symmetric on both the upper and lower

surfaces in Figure 4-20, which is appropriate for this 0' angle of attack. The abrupt

* turning of the density contours on the upper surface indicates the presence of

boundary layer. At ac = 10.780 in Figure 4-21, the stagnation point moves to the

lower surface of the airfoil. The concentration of fringes and contours near the

leading edge indicates strong acceleration in that region. It is clearly seen that the

present solutions correctly simulate the experimental observations.

I
I
U
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Next the dynamic stall condition is simulated with k=0.05 and M. = 0.3. The 3
oscillatory motion is solved by marching in time with a constant time step. The

time step size is such that it corresponds to 1,200 time steps to complete one

oscillating cycle. The third-order TVD scheme in space and second-order accurate

scheme in time are applied. The development of the unsteady flow field is shown

in Figure 4-22. During the upstroke (T), at a = 4.3' (Figure 4-22a) the flow is fully

attached. As the airfoil reaches the proximity of the static stall angle (a _12.00),

(Figure 4-22b), the attached flow persists. The boundary layer on the upper surface,

however, has grown considerably, as seen from the density contours. At a = 200

(Figure 4-22e), a shallow reversed flow region, which initiated at a = 12.OOT (Figure 4-

22b) at the trailing edge, expands upstream rapidly. This flow reversal grows in size I
and propagates upstream. It is this reversal flow that introduces an abrupt

separation of the boundary layers and the subsequent development of a leading edge

vortex. With further decrease in the angle of attack, the flow reattachment process

starts from the leading edge downward (see Figure 4-22f-4-22k). At a = 6.40, the flow

on the upper surface attaches completely.

The local amplified view of density contours and experimental fringes during the

reattachment process of the above oscillation cycle are shown in Figure 4-23. The

leading edge bubble due to shear layer attachment and its growth can be observed.

4.5.2 Effect of Mean Angle of Attack 3
The effect of the mean angle of attack was studied by using the same conditions as

the above, except that Aa = 61, and am is selected as 6' and 120. For am = 60, it

corresponds to light stall, and for ac = 12', it is a deep stall. The computed lift 3
coefficients as a function of a in an oscillation cycle for am = 60 and am =12' are

shown in Figure 2-24. The experimental data of McCrosby' are also given. The 3
comparison is fairly good.

I
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5. THREE-DIMENSIONAL STATIC AND DYNAMIC STALLS ON THE WINGS

In this section, numerical results for flow fields and tip vortex formation are

presented for several wing sections. These results are compared with the available

experimental data. The different flow conditions and the wing geometries I
considered are:

1. Rectangular wings in subsonic flow;

2. Static and dynamic stalls on a rectangular wing; I
3. Static and dynamic stalls on a forward swept wing;

4. Static and dynamic stalls on a swept back wing; andI
5. Static and dynamic stalls on a delta wing. a

5.1 Steady Flow over Rectangular Wings

In order to validate the present 3-D code, and the coding of the Baldwin-Lomax

turbulence model, a simple non-lifting case is presented first. This case involves a

subcritical flow (M. = 0.5) about a large-aspect-ratio wing composed of NACA0012

airfoil sections. Because of the large-aspect-ratio characteristic, the symmetry plane

solution at both the wing root and wing tip is essentially two-dimensionMi and

should compare favorably with the two-dimensional counterpart. Such a

comparison of pressure coefficients from both 2D and 3D, and experimental data of

Thibert et al.111 is shown in Figure 5-1. In the 2D calculation, a grid of 100 x 40 is

used. For 3D, it is 100x40x2, and symmetric boundary conditions are applied at two

lateral planes. The agreement for this easy case is excellent.

I
I
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The second geometry consists of a rectangular wing with a square tip and a

NACA0015 cross-section without twist or taper. The aspect ratio (AR) is 2.5. The

incoming free-stream has a Mach number of M.= 0.16, Reynolds number of

Re=2.0xl06, and an angle of attack of a=110.

A single-block O-H grid topology is used for this calculation. There are 84 points in

the periodic direction, 16 in the spanwise direction, and 48 in the normal direction. I
The wing is represented as a solid block containing 4 radial (normal) cells and 14

spanwise cells. The surface grid and grid root wing are shown in Figure 5-2a. Its I
planform is given in Figure 5-2b. There are four cells extending out the wing tip to

capture tip vortex.

The wing root is taken as a symmetric plane to remove the need of refining the grid I
in order to resolve the boundary layer. As a result, the flow features near the wing

root resemble those of two-dimensional flows.

Figure 5-3 shows the computed surface pressure distributions at several spanwise

stations compared with the experimental data of Spivey and Moorhouse 11211 3. The

inboard spanwise stations show good agreement with the experiment as evident in

Figure 5-3b-d. However, on the suction side at the wing tip, Figure 5-3a, the pressure

distribution is not as well predicted. This may be due to the details of the tip-cap, as

discussed by Srinivasan et al.114

Figure 5-4 shows the surface oil-flow pattern on the upper (suction) and ower

(pressure) sides of the wing. This surface oil flow picture is generated by releasing

fictitious fluid particles at one grid point above the surface and by restricting these

particles to that plane. The three-dimensional effect is evident near the wing tip.

Figure 5-5 shows the three-dimensional perspective view of particle traces around

I
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Figure 5-4. Surface Oil-Flow Pattern (Simulated) for the Rectangular

NACA0015 Wing. M.=0.16, a=11 °, and Re=2xl0 6,

(a) Suction side and (b) Pressure side I
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Ithe wing tip. It is seen that the tip vortex is lifting off from the upper surface of the

wing at about the trailing edge position. Figures 5-4 and 5-5 reveal that the particles

Ireleased in the lower surface of the wing cross over the tip region into the low-

pressure region of the upper surface of the wing. These particles mix with the

particles released on the upper surface and together they define a tip vortex that is

distinct from the rest of the sheet.

Figure 5-6 shows the pressure contours on the wing surface. With the exception

being near the tip, the pressure is almost spanwise-independent. It is evident that

the tip vortex also causes a pressure gradient at the wing tip.

i 5.2 Static and Dynamic Stalls on a Rectangular Wing

The operational wings are three-dimensional, and are likely to encounter unsteady
flow in three-dimensional conditions. This subsection studies the three-

dimensionality of unsteady separated flows on a simple unswept symmetric wing.

The experimental visualization of Adler and Luttges48, and Ashworth et a157 will be

use as a comparison basis, since only limited experimental data are available.

The same flow conditions are used as in the experiment48: Re-42,000, M=0.02, and

angle of attack varies harmonically with time:I
a = am + Aa sin (ox)

I with (5.1)

k= r- =0.93, am =150, Aa=100
2U.

I
I
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Figure 5-6. Surface Pressure Contours for the Rectangular NACA0015 Wing.

M-=0.16, (x=11O, and Re=2x10 6,

(a) Suction side and (b) Pressure side
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The computational domain contains 58x48x18 grids in the 41, Z and 43 directions, U
respectively. Again, there are four cells beyond the wing tip to capture the tip

vortex. All the computations reported below are carried out with 3rd-order TVD in U
space and Crank-Nicolson schemes in time.

To gain confidence on the present code, a comparison is made first between the

particle traces of the present prediction and experimental smoke visualization of

Reference 48, for static stall and dynamic stall at a = 180, as shown in Figure 5-7. For u
the static stall, the flow is fully separated from the upper surface of the airfoil at this

spanwise location (0.98c from the wing tip). This is well predicted by the present

theory. The present calculation also predicts several vortices on the upper surface,

which is not seen in the experiment. It should be noted that these vortices appear in

the figure only if particles are released in that region. Experimental visualizations

are obtained by introducing smoke traces upstream to the airfoil. The convected 3
smoke particles may not travel through the upper wing surface so that the details of

the above recirculating flows may not be detected. 3
Under unsteady conditions (dynamic stall in Figure 5-7) there is a leading edge

bubble (or dynamic stall vortex) on the upper surface in the experiment. The

agreement of the present theory with experimental visualization is remarkable. To

gain a three-dimensional understanding of the flow field, oil-flow patterns on the

upper wing surface and particle traces at different spanwise locations for both static 3
and dynamic stalls are shown in Figure 5-8 and Figure 5-9, respectively. From the

oil-flow pattern of both the figures, a transition from flows dominated by the wing I
tip vortex to those dominated by the leading edge vortex is observed. The flow

beyond Ic inboard is essentially two-dimensional, which is characterized by the I
leading edge vortex, secondary vortex and territorial vortices. Near the wing tip,

however, the secondary and territorial vortices are suppressed by the tip vortex,

90 I
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Figure 5-8. Particle Traces on the Upper Surface of NACA0015

Rectangular Wing and at Several Spanwise Locations for Static Stall.

Re-42,OOO, M=0.02 and a =18.30
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Figure 5-9. Particle Traces on the Upper Surface of a NACA0015 RectangularI Wing and at Several Spanwise Locations During Dynamic Stall.
Re=42,OOO, M_=0.02 and ot=18.30 Downstroke (1)
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such that only the leading edge separation is visible from the particle traces. The

size of the secondary vortex grows from the wing tip toward the wing root. I
To illustrate the size and convective characteristics of the leading edge vortex,

Figure 5-10 shows the particle traces at 0.67c inbound location, from the present I
computation (k=0.93). The experimental visualization s 7 at k=1.0 are also shown for

the comparison. At the maximum angle of attack, a=25°, the shear layer vorticity at i
the leading edge is coalescing into distinct vortex patterns. With decreasing alpha,

(Figure 5-10b, cz=180; Figure 5-10c, a=5*), the leading edge vortex convects toward the U
trailing edge by the free stream flow. With the continuation of pitching motion

(Figure 5-10d,e) the leading edge vortex is shed from the trailing edge to the wake

and the flow reattaches to the surface of the wing.

The flow patterns at an even further inboard location of 1.5c are given in Figure 5-11

for the present computation. The leading edge separated flow at a=23.3' (Figure 5-

11j) breaks up into two bubbles (Figure 5-11a) convecting downstream along the 3
upper surface of the wing. At 0x=21.0* downstroke, (Figure 5-11b), the shear layer is

separated from the leading edge. As the angle of attack decreases, the shear layer

starts moving towards the airfoil upper surface (Figures 5-11b and 5-11c). The

reattachment occurs when the static stall angle is reached (Figure 5-11d), and a

bubble is formed. The shear layer further separates downstream. Meanwhile, the

leading edge attachment progresses and the bubble grows in the size and convects to

the trailing edge during the upstroke portion of the cycle (Figure5-11f-j).

I
U
I
I
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Figure 5-11. Flow Patterns over One Pitching Cycle at 1.5c Inboard,

3 D Rectangular Wing, Re =42,000, k=0.93
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The difference of flow patterns between the upstroke and dow stroke for the bubble

development are due to the hysteresis effects that are always present in these

I unsteady flows. The effect of a tip vortex can be appreciated by comparing Figures 5-

10 and 5-11 in the upstroke of the cycle. Near the wing tip (Figure 5-10) the flow is

I attached during upstroke instead of separated for the location far inboard (Figure 5-

11).

Figure 5-12 shows the flow patterns and pressure contours on the upper surface over

a pitching cycle. The movement of the separated flow region is clearly seen from

the oil-flow pattern, while separation and reattachment are always accompanied by

high pressure gradients.

Figure 5-13 shows the lift coefficient verses the angle of attack in one oscillatory

cycle. The 2D counterpart is also given. It is interesting to note that the lift curve

slope for the 3D wing is reduced from the 2D value. This characteristic has also been

found in the experiments47 49 . It is noted that dynamic stall is delayed and the

amplitude of the lift drop is reduced in the 3D wing in comparison to that in 2D.

This delay in dynamic stall is attributed to lower effective angles of attack caused by

proximity to the wing tip. During the downstroke, the suction pressure peak is

usually associated with the stall vortex. This vortex interacts with the tip vortex and

is suppressed near the wing tip. As a result, the pressure on the upper wing surface

is relatively high compared to the 2D counterpart (see Figure 5-12). This causes a

lower lift during the downstroke. The oil flow visualization in Figure 5-12 indicates

that the tip vortex rolls up over the wing in a roughly 30" triangle beginning at the

tip leading edge.

97



99I
CAI

06I
MEI

7 '4 1
ZI

98-



I 0

IIl

I A II \ '~\\~~v Kw

'.11 I K *L

I9



IN I ! 1 I II

I
_____________ I

-~ ~- ~

*\ \' I
li

/ .9

0 I

'~

I
I I II

II
4- 0L______

~ I

I
I

* I
w I
0

I
-~ I

I
too I

I



I

I N zT N -

I
0

* L>I?

- a...

AII " ,' \

I 1/i 1

i ~
I U I~

U 4'0

I _____

I N ~'.... ... I-

~ ~

I /

>1~
--'-7I

-~ 4'
~~-' \'k~I

0

I K'-
I

I I
101

I
I



2D calculationU

3D calculation

0.9 -

Ct

510 15 20 25

angle of attack, cc

Figure 5-13. Lift Coefficient versus Angle of Attack for a Rectangular

NACA0015 Wing Under Oscillating Motion. Re = 42,000, M = 0.02 and k = 0.93

102



I

I 5.3 Static and Dynamic Stalls on a Forward Swept Wing

I Forward swept wings are found to perform well at high Mach numbers and have

aerodynamic advantages at very low airspeeds (laminar flow) 115, 116 . They are much

I better suited as laminar flow wings, due to smaller effective sweep angles compared

to a corresponding backward swept wing. Thus, the laminar boundary of a

comparable forward swept wing is more stable against attachment line transition

and crossflow instability. This section focuses on the three-dimensional

characteristics of unsteady flows produced about a swept forward wing under static

I conditions and dynamic pitching conditions.

The flow and wing geometry are such that they simulate those in the experiment of

Ashworth et a156 . The wing has a NACA0015 cross-section, and 300 forward sweep.

The tape ratio is 1.0 and the aspect ratio is 2.0. The boundary conditions and

computational grid on the wing surface are shown in Figure 5-14. The Reynolds

I number is Re=40,000 with M=0.02. An O-H grid topology is applied to generate the

grid around the wing, as shown in Figure 5-2. There are 58 grids in the

circumferential, 44 in the radial, and 18 in the spanwise directions. Four cells are

located beyond the wing tip to capture the tip vortex (see Figure 5-14).

I
I
I
I

- 103

I



I

I
I

leading edge booundaryI

I.

I

I

trailing edge I
104

~I

'00I

.- I
=,mmm~~~~00 

00u 
mwllm illi l



I

5.3.1 Computations for Static Conditions

Figures 5-15 to 5-17 show the comparisons of flow visualizations 56 with the present

3D static calculations. The Reynolds number is 40,000, and the angles of attack are

I 30, 150 and 270 for Figures 5-15, 5-16, and 5-17, respectively. At an angle of attack of

I] 30, the flow is fully attached, and there is only a slight difference in the flow

characteristics at 0.58c inboard and at 1.15c inboard (Figure 5-15). At an angle of

attack of 150, leading edge separation appears in the suction side of the wing. The

size of the separated flow varies with spanwise locations. For example, at 0.58c

Iinboard (Figure 5-16a), the flow is reattached, while no reattachment is visible at

1.15c inboard (Figure 5-16b). At even higher angles of attack, (x = 270) the flow is

totally separated from the upper surface (Figure 5-17). It can be seen that the present

computations predict well the experimental visualizations.

To appreciate the three-dimensionality of the present simulation, particle traces are

shown in Figures 5-18 and 5-19 for a=271 with top and side views. The top view

(Figure 5-18) clearly displays the effect of tip vortex and three-dimensionality of

separated flow on the suction side of the wing. From the side view (Figure 5-19) one

can see the growth of the separated flow region from the wing tip toward the wing

i root.

Given in Figure 5-20 are the oil-flow pattern on the upper surface of the wing.

There is a focus point at 1.5c inboard. In comparison to Figure 5-18 of the three-

I dimensional particle trace, we see that the flow particles released near the wing tip

are sucked to the wing's upper surface, and take off at the focal point to form a

I helical flow pattern.

I
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Reattachment line of leadingI edge vortex

IWing tip

I tip vortex

I Figure 5-20. Oil Flow Pattern on a 300 Forward Swept Wing

at Re=4x104, (X = 27' and M =0.02
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5.3.2 Computations for Dynamic Conditions

The simulations were further made for dynamic wing undergoing oscillatory

pitching. The angle of attack varies as equation (5.1). The rotation axis is the line

connecting the root and tip 1/4 chord. Figure 5-21 gives the oil flow pattern on the

wing surface and particle traces at several spanwise locations during an oscillatory

cycle. Unlike symmetric (rectangular) wings, a forward swept wing experiences

pronounced effect of tip vortex. This is evident from the large area occupied by the

tip vortex at a = 250 (Figure 5-21a) and at a = 22.30 (Figure 5-21b). On the other hand, 1
the leading edge vortex domain consists of a triangular wedge with base far inboard

and apex near the leading edge of the wing tip. During the downstroke, the tip I
vortex penetrates inboard, and prevents the convection of the leading edge vortex

into the wake (see Figure 5-21d). Like a rectangular wing, there is a rapid

disappearance of the leading edge vortex at ac = 50. During the upstroke, the tip

vortex breaks down, (Figure 5-210. The result is massive helical flow on the wing

surface (Figure 5-21g). At the mean time, the broken tip vortex grows with the angle

of attack (Figure 5-21h).

It is seen that the forward swept wing produces flow fields that differ significantly 1
from those of a straight symmetric wing. The flow near the wing tip delays the

separation far below the static stall angle during the downstroke.

1
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The previous studies on two-dimensional airfoils show that the upward motion

generates a leading edge vortex that passes over the chord to the trailing edge.

Depending on the reduced frequency k value, a trailing edge vortex is elicited with

the opposite sign. This trailing edge vortex often causes a rapid separation of the

i flow from the airfoil surface. In the present calculation, there is little evidence of a

trailing edge vortex. It appears that the tip vortex suppresses the initiation of the

trailing edge vortex (see Figure 5-21); therefore, the dramatic flow separation does

not coincide with the passage of the leading edge vortex into the wake. The present

work is consistent with the work of Gad-el-Hak 47, Carta49, and Ashworth et al.56 in

that vortices form over the upper surfaces at high angles of attack and these vortices

simply increase or decrease in size as pitching is introduced.

i 5.4 Dynamic Stall on a Swept Back Wing

i Computations were made for the same conditions as those for the forward swept

iEwing. A 300 swept back wing was analyzed to investigate the effect of sweep. Both

static and dynamic stalls were calculated, but only dynamic stall is presented below.

Given in Figure 5-22 are similar to those graphics in Figure 5-21, showing the oil-

flow pattern at the upper wing surface and particle traces at several spanwise

locations. In contrast to the forward swept wing, the leading edge vortex now

becomes large along the spanwise direction toward the wing tip. The interaction

between the leading edge vortex and the tip vortex still exists but is only limited to

i the proximity of the wing tip. The generation and propagation property of the

leading edge vortices is similar to that in the forward swept wing. The unique

aspect of a swept back wing during dynamic stall is that the swept back generates

flow from the wing root toward the tip. This flow motion resists the inboard flow

produced near the wing tip by the tip vortex. Vorticity is then accumulated into a

I
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I
structured leading edge vortex on the swept back wing surface at spanwise points 3
proximal to the wing tip. I
To compare the characteristics of the interaction of the leading edge vortex and the

tip vortex for the three different wings (300 swept back wing, rectangular wing, and

300 forward swept wing), the surface oil-flow patterns at cc = 220, and (x = 80 during

the downstroke are shown in Figure 5-23 and Figure 5-24. It is seen that the forward

swept wings and swept back wings produce spanwise fluid motion along the top

surface. The minimum pressure line, corresponding to the leading edge vortex core 3
line, runs roughly parallel to the wing leading edge. Since the airflow is not

orthogonal to the line, the span-directional velocities are produced. The influence I
of tip vortex is the most pronounced and penetrates far inboard for the forward

swept wing, and is limited only to the wing tip for the swept back wing. I

Starting from a wing root, the leading edge vortex size increases toward the wing tip U
for the swept back wing, keeps constant for the rectangular wing, and decreases for a

forward swept wing. A swept back wing, for which the wing surface area covered byI
a vortical structure is significantly larger than the forward swept wing, has the

potential of providing the ideal fluid dynamic characteristics for unsteady lift

enhancement. This is proven in Figure 5-25, which shows the lift coefficients for

the above three wings.
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(a) 300 Swept Back Wing .K- 3

- I
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(b) Rectangular Wing Wing Tip
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(c) 300 Forward Swept Wing '

a =8.4701
z- I

Figure 5-24. Comparison of Oil-Flow Patterns (Simulated) on the Upper Surfaces

of a 300 Swept Back Wing, a Rectangular Wing and a 300 Foward Swept Wing l
During Downstroke of an Oscillation Cycle Around a = 8'
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Figure 5-25. Lift Coefficients versus a for a Rectangular Wing,

a 30 Swept Back Wing, and a 300 Forward Swept Wing
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I
5.5 Static and Dynamic Stalls on a Delta Wing

In a steady flow, the lift of a two-dimensional airfoil is contributed mainly by the

leading edge suction peak. The lift increases with increasing angle of attack until the

stall angle is reached. The separation on the upper surface will then reduce the 3
leading edge suction peak causing the lift to drop. The lift producing mechanism of

a delta wing is somewhat different. There are two smooth such peaks inward of the

leading edges. These peaks are produced by a pair of stationary leading-edge vortices

formed by separated flow on the low-pressure side of the wing. Therefore, the lift

on a delta wing is created by the separated vortical structures rather than by the

attached flow over a convex surface.

In this section, the unsteady flow field around a delta wing is studied by numerical

simulation. The delta wing has a 45 degree sweep. The Reynolds number based on

the root chord is 1.7 x 104. Figure 5-26a is a sketch of the 450 delta wing, which has a 3
NACA0012 profile at each spanwise section. The wing is pitched around the quarter-

chord position. The angle of attack varies with time in the same way as shown in I
Equation (5.1). The reduced frequency is 0.24. The computational grid is 50 x 39 x 18

(circumferential x radial x spanwise). The upper surface grid is shown in Figure 5-

26b.
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The oil-flow patterns for static delta wing are shown in Figure 5-27. At an angle of 3
attack of 50, the flow is attacked, and the leading edge vortex roll-up can be identified

from the separation line. This roll up vortex is a spiral vortex sheet shed from the

leading edge as shown in Figure 5-28. At a high angle of attack, the separation on

the delta wing starts from the leading edge corner. This is different from a

rectangular wing which initiates a separation at the trailing edge. The separation

zone propagates to the wing root with increasing a (see Figure 5-27c-d). There is a

focal point on the wing surface at a = 150. This in turn generates a helical flow

leaving the wing surface. The three-dimensional particle traces for this angle (a -

150) are shown in Figures 5-29 and 5-30. I
Figure 5-31 shows the surface oil-flow patterns for the delta wing at several angles of

attack during an oscillatory cycle. At the early stage of the upstroke, Figure 5-31a-b, I
there is a tip roll-up characterized by the separation along the leading edge. This tip

roll-up forms a spiral vortex sheet as shown in Figure 5-28. With an increase in the I
angle of attack, Figure 5-31c, the separation of the leading vortex starts from the

trailing edge corner, and propagates upstream and inward (see Figure 5-31c-e). I
During the downstroke, the flow starts to reattach. For example, at a = 16.51,, the

flow near the whole leading edge (from the apex to the corner of the trailing edge) U
becomes reattached. It is interesting to note that the leading edge vortex does not

convect, rather it experiences a grow-decay cycle.
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Figure 5-31. (Continued)
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E 6. CONCLUSIONS AND RECOMMENDATIONS

I 6.1 Condu *ml

I The design of future generation combat aircraft for increasing level of performance

requires good control capability at the high pitch rates at angles of attack beyond

maximum static lift. This, in turn, requires detailed knowledge and exploitation of

-- the highly unsteady vortical flow field in the vicinity of the vehicle. The present six-

month SBIR Phase I study developed several new methodologies for pressure-based

I- Navier-Stokes equation solvers. With the developed techniques, both steady and

unsteady separating flows are analyzed for 2-D airfoil and 3-D rectangular, forward

swept, swept back and delta wings. Based on the present investigation, the

following conduding remarks can be made.

1. The pressure-based method was demonstrated to be efficient (both in

terms of storage and computation time requirements) for flows ranging

from subsonic, transonic to supersonic, and from incompressible to

* compressible flows.

2. The presently developed TVD scheme for convective term discretization

requires no artificial dissipation and can properly resolve the concentrated

vortices with minimum numerical diffusion. When applied to transonic

flows, the TVD scheme can capture shock with a single transition point.

The property was demonstrated for the density-based methods but it has

never been shown before for the pressure-based methods.I
3. For inviscid supersonic flow over a NACA0012, the pressure-based TVD

I method is as accurate as density-based TVD, and performs better than the

density-based method with artificial dissipation.
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4. For steady viscous transonic flow, the present analysis well captures I
transition points and recirculating flows. It is very competitive relative to

previous density-based analyses.

5. Comparisons with experimental visualization and measurement of the I
present solutions for 2D airfoil undergoing both constant pitch rate and

oscillating motion are very good. All the essential physics are well

preserved.

6. Validation study for 3D steady flow proves the accuracy of the present

code. I
7. The interaction between leading edge vortex and tip vortex for 3D forward

swept wing, rectangular wing, swept back wing, and delta wing have been

studied. I
For a rectangular wing, the wing tip vortex dominates the outboard

stations and interacts with the leading edge vortex at nearly right angle.

For a forward swept wing, due to the induction of spanwise flow toward i
the wing root, the effect of wing tip vortex penetrates deep into the wing

surface, and suppresses the convection of leading edge vortex. In addition, I
the size of the leading edge vortex grows from the wing root.

For a swept back wing, the tip vortex effect is only limited to the proximity

of the tip.

I
I
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For the delta wing, the separation of the leading edge vortex starts from

the corner and shifts inboard with pitch, but never truly convects

downstream as in two dimensions.

I 6.2 Recommendations for Future Work

The current (Phase I) study has successfully verified the capability of pressure-based

method in predicting steady and unsteady flows on 3D aerospace vehicles. Further

studies are recommended to refine the computational model and to investigate

several dynamic stall control schemes.

1. Refinement of the Present Code. In Phase I, due to limited availability of

experimental data and limited project time, only static lift, pressure coefficients and

dynamic visualizations have been compared and validated against experiments. In

Phase I, systematic comparisons of predicted drag, lift and moment coefficients will

be made with benchmark experimental measurements which are now undertaken

at NASA Ames Research Center for 3D rectangular wing with NACA0015 cross-

section. Since turbulence modeling is an essential part of the simulation, the

assessment of Low Reynolds number turbulence model of .. .Y. Chien, and Standard

I k-e model will also be carried out.

I 2. Dynamic Stall on Double-Delta Wing. For a double-delta wing under static

condition, there exists many interesting phenomena as shown in Figure 6-1. These

Iinclude the interaction of strake vortices and wing vortices, asymmetry of vortical

patterns, vortex bursting, and vortex sheet tearing" 7"119 . Further study into dynamic

I condition during maneuvering will shed light on the fluid physics and will provide

Ibetter controlling techniques.

I
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3. Study of Dynamic Stall Control Schemes. With an understanding of basic U
fluid physics, and the well validated code, the various controlling concepts will be

investigated by computer simulations. Several novel schemes proposed by Young

are shown in Figure 6-2120.

In Phase II, some of the recently proposed concepts will be considered:

a. Vortex flap concept, Figure 6-3a 1 21

b. Apex fence flaps, Figure 6-3b121. These devices are deployed at an angle to

slender delta wing. They alter the vortical flow field and produce an

intense suction at the apex which enhances the lift and gives a nose up

pitching moment. At high angles of attack, they reduce apex lift and

produce a desirable nose-down pitching momentum.

c. Forebody strake, Figure 6-3d' 22. These strakes are conformally stored in

the forebody, and when deployed, force asymmetric vortex shedding from

the forebody, generating a controlled yawing moment.

d. Spanwise blowing123, Figure 6-3e. With realistic blowing rates, the jet

momentum can stabilize the leading edge vortices and produce significant

lift increments at high angles of attack. I
4. Computational Flow Visualization. Dynamic stall numerical simulation

creates large data sets which are difficult to analyze with existing graphic

postprocessing tools such as PLOT3D, FAST, EXPLOT, FIELD-VIEW etc. Two types

of graphic tools need to be developed to process and validate the computational I
results:

I
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a. Dynamic image generation with animation capabilities, capable of

generating shadowgraphs, Schlierens, and interferometry images, smoke

I traces, etc. Automatic detection and display of critical point lines and

surfaces (separation lines, recirculation bubbles, etc) are also essential.

b, Graphical image examiner for alignment and comparison of

computational versus experimental amd computational versus

computational flow images.

I Both of the above packages, CFD-VIEW and CFD-Image are currently being

developed at CFDRC on SGI graphic stations and will be adapted for the proposed

i dynamic stall flow analysis study.

I The Phase H1 study will produce a validated 3D CFD code which will be of significant

value to the U.S. Air Force, Federal Aviation Agency and aircraft manufacturers.

This will also provide a strong foundation for futher research and development of

various dynamic stall control schemes for advanced combat aircraft.

I
I
I
I
I
I
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